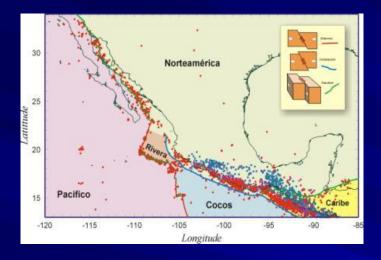


himmedial Autimana Benita Jacine de Cherace 1955 CIENCIA - ARTE - IDEERIAD Marco Hernández-Escampa, Ph.D. Daniel Barrera-Fernández, Ph.D,

Autonomous University "Benito Juárez" of Oaxaca MEXICO

Suva, Fiji. October /2018

Archaeometallurgical Heritage

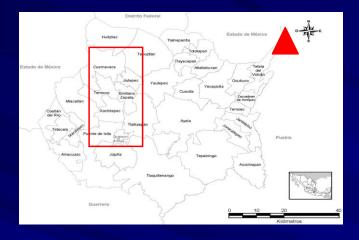


Geography

Heritage conservation. Morelos

- Railway Heritage studies showed the presence of unexpected chemical compounds in the corrosion products.
- This happened in rural areas where pollution sources are limited.
- Eventually, a volcanic source was proposed.

Railway bridge in Barranca Honda, Morelos. Mexico


X-Ray Diffraction results

- δ-Fe₃O₄
 δ-Fe₂O₃
- FeO
- SiO₂
- FeSO₄7H₂O
- Pb₃O₄

Maghemite Ferric Oxide Quartz Melanterite

Magnetite

Minium

Formation of FeSO₄ (Ferrous sulphate)

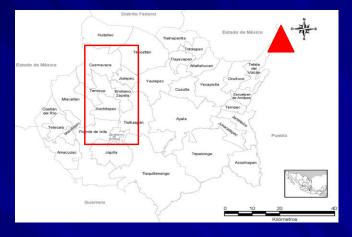
• Fe + SO₂ + O₂ \rightarrow FeSO₄ (Material reacts with the atmosphere)

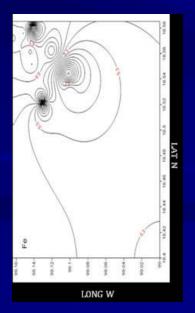
■ 4 FeSO₄ + O₂ + 6 H₂O \rightarrow 4 FeO·OH + 4 H₂SO₄

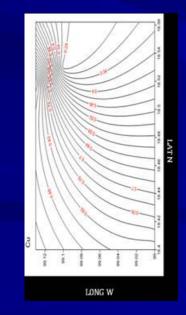
(Ferrous sulphate reacts with oxygen and water present in the atmosphere)

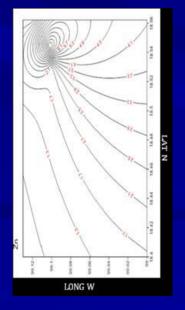
(Sulphuric acid keeps reacting producing FeSO₄)

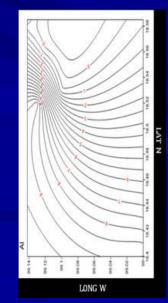
Athmospheric Corrosion


- SO₂ Industrial residues, cities
- NaCl Coasts


Weight loss technique Vcorr = $(m_i - m_f) / \rho A t$ where: V_{corr} corrosión rate (mm/year) m_i initial mass (mg) m_f final mass (mg) ρ density (mg/mm³) *A* exposed area (mm²) *t* duration of exposition (year)


(Sarmiento-Bustos. E. et al. Including Hernández-Escampa)


Corrosion rates: Carbon steel

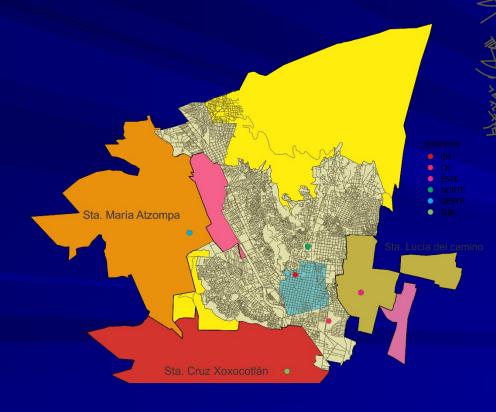

Station - 1995	VC Fe (µm/year)	Station - 2012	VC Fe (µm/year)	% Increase	
Chamilp a	2.240	UAEM	8.903	397	
Civac	2.230	Centro Jiutepec	4.916	220	

C, Cu, Zn, Al (Sarmiento-Bustos. E. et al. Including Hernández-Escampa)

UNESCO World Heritage

OAXACA

- Absence of archaeometallurgical catalog
- Increase of vehicles since 1980 (7X)
- Atmospheric corrosion unkown
- References. Sevilla, Campeche



OAXACA

- Atmospheric corrosion stations
- GIS localization of heritage

- Casa en Av. Juárez y Marganta Maz
- Edif multifamiliar "El Correctione"
- Edif multifamiliar "Sta Elen
- Gasolineria "San Pablo"
- Plaza Santo Domingo
- Proveedora Escolar
- Teatro Macedonio Alcala
- Teatro Juárez

OAXACA

Partial results (3 months)

10X corrosion in the Historic centre

comparación de resultados ecuación 1 y 2 COBRE					
	ecuación 1	ecuación 2			
	mm/años				
	velocidad	velocidad			
	Vcorr	vcorr			
CH-01	0.000160682	0.00015769			
CH-02	0.000160682				
N-01	0.003856372	0.00378456			
N-02	0.005856572				
S-01	0.000174072	0.00017083			
S-02	0.000174072	0.00017083			
E-01	0.000191926	0.00018835			
E-02	0.000191926	0.00018835			
O-01	0.000212011	0.00020806			
O-02	0.000212011				
CU-01	0.000545400	0.00246829			
CU-02	0.002515122				

comparacion de resultados ecuación 1 y 2 FIERRO						
	ecuación 1	ecuación 2				
	mm/años					
	velocidad	velocidad				
	Vcorr	vcorr				
CH-01	0.0029955889	0.00293981				
CH-02	0.0029955889					
N-01	0.0003430064	0.00033662				
N-02	0.0003430064					
S-01	0.0000686013	0.00006732				
S-02	0.0000686013					
E-01	0.0004210220	0.00043380				
E-02	0.0004319339	0.00042389				
O-01	0.0001.400005	-0.00014712				
O-02	-0.0001499065					
CU-01	0.00000000.000	0.00000447				
CU-02	0.0002083446	0.00020447				

Final Considerations

- The method can be applied in different regions yielding a predictive tool for archaeometallurgical conservation management.
- Geographic and territorial scale can also be useful for infrastructure conservation.
- In some cases, other disciplines might be interested in the results, such as urbanism and health studies.
- Similar natural and urban processes might occur in the entire Pacific region.
- Current research in Oaxaca, Mexico.

- Acknowledgements: Gustavo Roldán Feria Alonso, Samuel Zárate Pérez, undergraduate students at UABJO.
- Sarmiento-Bustos, E., Hernández-Escampa, M., Rodríguez-Acuña, F., y Sarmiento-Martínez, O. <u>Corrosión atmosférica y conservación de materiales y patrimonio histórico en Morelos, México.</u> Congreso internacional de investigación, Academia Journals / Instituto Tecnológico de Celaya. ISSN 1946-5351 (online) y 1948-2353 (CD ROM) 2013

Thank you for your attention!!!

Marco Hernández –Escampa Autonomous University "Benito Juárez" of Oaxaca Faculty of Architecture C.U. MEXICO

mescampa.arqcu@uabjo.mx